Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 28(9): 1640-1651, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299125

RESUMO

Collagen fibrils represent a unique case of protein folding and self-association. We have recently successfully developed triple-helical peptides that can further self-assemble into collagen-mimetic mini-fibrils. The 35 nm axially repeating structure of the mini-fibrils, which is designated the d-period, is highly reminiscent of the well-known 67 nm D-period of native collagens when examined using TEM and atomic force spectroscopy. We postulate that it is the pseudo-identical repeating sequence units in the primary structure of the designed peptides that give rise to the d-period of the quaternary structure of the mini-fibrils. In this work, we characterize the self-assembly of two additional designed peptides: peptide Col877 and peptide Col108rr. The triple-helix domain of Col877 consists of three pseudo-identical amino acid sequence units arranged in tandem, whereas that of Col108rr consists of three sequence units identical in amino acid composition but different in sequence. Both peptides form stable collagen triple helices, but only triple helices Col877 self-associate laterally under fibril forming conditions to form mini-fibrils having the predicted d-period. The Co108rr triple helices, however, only form nonspecific aggregates having no identifiable structural features. These results further accentuate the critical involvement of the repeating sequence units in the self-assembly of collagen mini-fibrils; the actual amino acid sequence of each unit has only secondary effects. Collagen is essential for tissue development and function. This novel approach to creating collagen-mimetic fibrils can potentially impact fundamental research and have a wide range of biomedical and industrial applications.


Assuntos
Colágeno/química , Peptídeos/química , Peptídeos/genética , Sequência de Aminoácidos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mimetismo Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
2.
Biopolymers ; 109(7): e23226, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30133697

RESUMO

It has proven challenging to obtain collagen-mimetic fibrils by protein design. We recently reported the self-assembly of a mini-fibril showing a 35 nm, D-period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo-identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d-period of Col108 mini-fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter-helical interactions and produce the observed 35 nm d-period. Based on this unit-staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d-periodic mini-fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self-assemble into mini-fibrils having the same d-period of 35 nm. In contrast, no d-periodic mini-fibrils were observed for peptide 1U108, which does not have long-range repeating sequences in its primary structure. The findings of the periodic mini-fibrils of Col108 and 2U108 suggest a way forward to create collagen-mimetic fibrils for biomedical and industrial applications.


Assuntos
Biomimética/métodos , Colágeno/química , Peptídeos/química
3.
J Biol Chem ; 290(14): 9251-61, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25673694

RESUMO

In this work we describe the self-assembly of a collagen-like periodic mini-fibril from a recombinant triple helix. The triple helix, designated Col108, is expressed in Escherichia coli using an artificial gene and consists of a 378-residue triple helix domain organized into three pseudo-repeating sequence units. The peptide forms a stable triple helix with a melting temperature of 41 °C. Upon increases of pH and temperature, Col108 self-assembles in solution into smooth mini-fibrils with the cross-striated banding pattern typical of fibrillar collagens. The banding pattern is characterized by an axially repeating feature of ∼35 nm as observed by transmission electron microscopy and atomic force microscopy. Both the negatively stained and the positively stained transmission electron microscopy patterns of the Col108 mini-fibrils are consistent with a staggered arrangement of triple helices having a staggering value of 123 residues, a value closely connected to the size of one repeat sequence unit. A mechanism is proposed for the mini-fibril formation of Col108 in which the axial periodicity is instigated by the built-in sequence periodicity and stabilized by the optimized interactions between the triple helices in a 1-unit staggered arrangement. Lacking hydroxyproline residues and telopeptides, two factors implicated in the fibrillogenesis of native collagen, the Col108 mini-fibrils demonstrate that sequence features of the triple helical domain alone are sufficient to "code" for axially repeating periodicity of fibrils. To our knowledge, Col108 is the first designed triple helix to self-assemble into periodic fibrils and offers a unique opportunity to unravel the specific molecular interactions of collagen fibrillogenesis.


Assuntos
Colágeno/química , Mimetismo Molecular , Sequência de Aminoácidos , Colágeno/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Conformação Proteica
4.
Methods Enzymol ; 492: 151-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21333791

RESUMO

Despite decades of intensive study, allosteric effects have eluded an intellectually satisfying integrated understanding that includes a description of the reaction coordinate in terms of species distributions of structures and free energy levels in the conformational ensemble. This chapter illustrates a way to fill this gap by interpreting thermodynamic and structural results through the lens of molecular dynamics simulation analysis to link atomic-level detail with global response. In this synergistic approach molecular dynamics forms an integral part of a feedback loop of hypothesis, experimental design, and interpretation that conforms to the scientific method.


Assuntos
Regulação Alostérica , Calorimetria/métodos , Simulação de Dinâmica Molecular , Sítio Alostérico , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Proteínas Repressoras/química , Termodinâmica
5.
PLoS Comput Biol ; 6(6): e1000801, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20532206

RESUMO

An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early innovation in the evolution of allostery.


Assuntos
Arginina/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Proteínas Repressoras/metabolismo , Regulação Alostérica , Sítio Alostérico , Arginina/química , DNA/química , DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Conformação Molecular , Proteínas Repressoras/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...